
Blast: Accelerating High-Performance
Data Analytics Applications by Optical Multicast

Yiting Xia
Rice University

T. S. Eugene Ng
Rice University

Xiaoye Steven Sun
Rice University

Abstract—Multicast data dissemination is the performance
bottleneck for high-performance data analytics applications in
cluster computing, because terabytes of data need to be dis-
tributed routinely from a single data source to hundreds of com-
puting servers. The state-of-the-art solutions for delivering these
massive data sets all rely on application-layer overlays, which
suffer from inherent performance limitations. This paper presents
Blast, a system for accelerating data analytics applications by
optical multicast. Blast leverages passive optical power splitting to
duplicate data at line rate on a physical-layer broadcast medium
separate from the packet-switched network core. We implement
Blast on a small-scale hardware testbed. Multicast transmission
can start 33ms after an application issues the request, resulting in
a very small control overhead. We evaluate Blast’s performance
at the scale of thousands of servers through simulation. Using
only a 10Gbps optical uplink per rack, Blast achieves upto 102×
better performance than the state-of-the-art solutions even when
they are used over a non-blocking core network with a 400Gbps
uplink per rack.

I. INTRODUCTION

In this era of big data, large-scale data-intensive appli-
cations are implemented on commodity cluster machines for
data-parallel computations. One use case that draws particu-
lar attention recently is the high-performance data analytics
applications, which involve a rich set of iterative machine
learning algorithms for stock market predictions, disaster early
warnings, disease diagnoses, product recommendations, user
preference analyses, etc.

These iterative machine learning algorithms for massive
data analytics usually run on cluster computing frameworks,
MapReduce [13] being the most commonly used one. In either
the Hadoop [2] or the Spark [27] MapReduce implementation,
these algorithms observe the underlying communication pat-
terns in Figure 1. A machine learning job may take hundreds
or even thousands of iterations to converge. Each iteration
starts from the multicast of a big data set of model parameters
from the master node to all the worker nodes (from tens to
hundreds depending on the cluster scale). The workers perform
computations based on the given parameters. Sometimes, the
computations require data exchange among the workers, thus
creating a shuffle phase. Each worker updates the model
parameters partially. These partial results are aggregated at
the master node to form the global model parameters for the
computations in the following iteration.

The multicast communication is a performance bottleneck
considering the big fan-out, large data size, and great number
of iterations. For instance, using the Latent Dirichlet Allocation
algorithm for text mining [8] requires the word distribution of

Multicast

Master

Workers Workers Workers

Master

Shuffle Aggregation

Fig. 1: Communication patterns in different phases of typical
iterative machine learning jobs for massive data analytics

all the sampled topics to be multicasted iteratively, which can
easily exceed 1GB of data per iteration and the learning usually
takes over 1000 iterations, leading to terabytes of data to be
multicasted. Other examples include the Logistic Regression
algorithm for Twitter spam filtering and the Alternating Least
Squares algorithm for Netflix movie rating prediction [12].
Both jobs take hundreds of iterations. In the multicast phase
of each iteration, a data source distributes 300MB and 385MB
data respectively, creating tens of gigabytes of multicast data.
Multicast communications account for 30% and 45% of the
job completion time respectively.

Therefore, high performance data analytics applications
routinely need to distribute terabytes of data from a central
data source to hundreds of servers for processing. The state-
of-the-art solutions for transporting these massive data sets all
rely on application-layer overlays. In Hadoop, multicast data
distribution is through the Hadoop Distributed File System
(HDFS) [2]. The multicast sender stores the data in HDFS
and a multitude of receivers retrieve the data from a few
data replicas, creating very high fan-out on the replicas. Spark
attempts to improve the HDFS overlay by a BitTorrent style
P2P overlay among the recipient nodes [27], but BitTorrent
suffers from suboptimal multicast trees that render high link
stress. A study shows that HDFS becomes the bottleneck when
the receiver nodes exceed a certain number, roughly 40 to 50,
and that BitTorrent actually has worse performance than HDFS
in practice [5].

These solutions all suffer from the inherent performance
limitations of application-layer overlays. However, not a sin-
gle solution today uses in-network multicast. This begs the
question: Why are decades of in-network multicast research
and development not leveraged to address this problem? The
reason lies within the network core. At 10Gbps or higher
speeds, traditional CSMA/CD broadcast is not supported. Only
full duplex point-to-point links are defined by the IEEE 802.3
standard at speeds higher than 10Gbps. Thus, to multicast
data to N top-of-rack (ToR) switches at line rate, N or more

sending switch ports in the network core must be consumed,
an expensive proposition when the network core is often
oversubscribed by unicast traffic alone. It is also notoriously
difficult to perform TCP-friendly congestion control on in-
network multicast traffic. Therefore, employing in-network
multicast may introduce more performance problems than it
solves. Existing protocols for multicast routing and group
management are also not able to construct multicast trees in
milliseconds as required by data analytics applications.

This paper presents Blast, a new approach for accelerat-
ing data analytics applications by in-network multicast. Blast
uses optical transmission to realize a physical-layer broadcast
medium, via passive optical power splitting, to connect a data
source to its receivers. Consequently, the broadcast data no
longer have to traverse the packet-switched network core and
do not interfere with unicast traffic in the core. Blast is de-
signed to leverage several technology trends. As transmission
rates evolve to 100Gbps and beyond, optical transmission
becomes the standard. Long range optical transceivers are
capable of transmitting at high power, enough to reach 100km
or more. When used across a short distance in a computer
cluster, these transceivers can support hundreds of optical
splits and still achieve high reliability. Active optical power
amplification can further increase the number of achievable
optical splits. In addition, optical power splitting is a very
reliable, mature, and inexpensive technology.

A new control plane is necessary to realize this approach.
Blast includes a tailor-made control plane, capable of collabo-
rating with data analytics applications interactively, making re-
source allocation decisions nearly optimally, and directing the
data flows in optical and electrical components in the network.
We implement Blast on a small-scale hardware testbed. Blast’s
control plane is very responsive. Multicast transmission can
start 33ms after an application issues the request, resulting in
a very small control overhead. We evaluate the Blast approach
at the scale of thousands of servers through simulation. Using
only a 10Gbps optical uplink per rack, Blast achieves upto
102× better performance than the state-of-the-art solutions
even when they are used over a non-blocking core network
with a 400Gbps uplink per rack.

II. MOTIVATION OF OPTICAL MULTICAST

A. Optical Power Splitting

Optical power splitter is the most basic device for wave-
length and bit-rate transparent physical layer data duplication
[21]. Depending on its specific design parameters, a power
splitter duplicates an incoming data stream by dividing the
incident optical power at predetermined ratios to its output
ports. Typically implemented using fused fibers, optical power
splitter is a basic building-block of the telecom networks for
a long time, with applications ranging from in-core routers to
FTTx (Fiber to the x) installations. Our work is also inspired by
the experimental work conducted by Wang et. al. [25][26][22],
which demonstrates that multicasting through an optical power
splitter can enable lossless end-to-end multicast transmission
between 1Gbps Ethernet sender and receiver NICs, and it can
be faster than multicasting through a non-blocking packet-
switched network that is shared by unicast traffic.

!"#$!"#$!"#$!"#$!"#$!"#$

optical
switch

(optional)

servers

optical power
splitters

Fig. 2: Using optical power splitters for optical multicast:
static connections to servers or to ToR switches; dynamic
connections to ToR switches via an optical switch

The excess optical power losses of today’s passive power
splitters are minimal, but they introduce an insertion loss, e.g.
-3 dB for a balanced power split. Since the power of the optical
signal must be greater than the sensitivity of the receiver
to ensure error-free data recovery, optical interconnects are
engineered with sufficient optical link budgets to accommodate
these losses. To mitigate the power budget limitation associ-
ated with larger-degree power splits, optical amplification is
typically leveraged to increase the effective link budget of a
given system. While amplifiers are active devices that require
additional power, they maintain data format transparency to
effectively decouple energy consumption from bit rate.

As a result of mature commoditization, optical power
splitters are of low cost and high reliability. On today’s market,
a 1-to-4 optical power splitter costs $40, a 1-to-16 one $80,
and a 1-to-64 one $250. Our measurement confirms that the
power of a 1Gbps Ethernet signal can be reduced by a factor
of 900 and yet the packet loss rate remains less than 10−4.
Optical amplification can further raise this limit, and the cost
of an amplifier is moderate, at roughly $1000.

Figure 2 depicts different ways to facilitate optical mul-
ticast. Optical power splitters can be connected to servers
directly to accommodate static multicast groups. The servers
should have an optical transceiver plugged in the optical-
compatible network interface card for optical signal transmis-
sion. Optical power splitters can also be connected to ToR
switches, so that a server beneath the sender ToR can multi-
cast to many servers across the destination ToRs. Most ToR
switches nowadays have standard ports for optical transceivers,
making the deployment simple. A high-radix optical space
switch, e.g. a 3D MEMS switch, can be used as a connectivity
substrate for dynamic allocation of optical power splitters.
Optical power splitters of various fan-out are connected to a
subset of the ports on the optical switch. The ToR switches
each have a number of fiber connections to the remaining
optical switch ports. Through run-time configuration of the
optical switch connections, the optical power splitters can be
connected to ToRs as needed. In any of the above ways, optical
power splitters of different sizes can be cascaded together to
reach a larger number of receiver nodes.

B. Advantages of Optical Multicast

In data analytics applications, the multicast group size
varies from 102 to 103 physical servers. Considering contigu-
ous server placement, a multicast group reaches out to several
hundred racks at the maximum. By cascading optical power
splitters of various sizes and amplifying the optical signals,
trees of up to 1000-way multicasts are realizable [21].

Because optical data duplication is data-rate transparent,
data can be transmitted as fast as the transceiver’s sending ca-
pacity. Using the off-the-shelf 10Gbps or 40Gbps transceivers,
high-volume multicast up to several gigabytes can be com-
pleted instantaneously. Optical multicast also gives optimal
link stress, since the network does not carry duplicated packets.
This is more efficient than the state-of-the-art HDFS and
BitTorrent overlays that suffer from suboptimal multicast trees.
Moreover, using optical multicast, the multicast traffic circum-
vents the packet-switched network core, causing no interfer-
ence with unicast traffic in the core. In network overlays, the
multicast traffic is transmitted as a large number of flows that
take away bandwidth from other unicast flows. Worse still, in-
network multicast schemes are not congestion controlled by
TCP thus can drive out unicast traffic completely.

The low cost of optical power splitters and optical am-
plifiers are already discussed. At the cost of a few thousand
dollars, we can build static multicast trees to alleviate hot spots
of multicast communications. In the case of using an optical
switch to dynamically allocate optical power splitters, a 320-
port MEMS switch costs $85,000, comparable to a high-end
Ethernet switch. With around $100,000, it is feasible to build
optical multicast functions in the entire region of a moderate-
scale computer cluster.

The power consumption of the optical devices are much
less than their electrical counterparts, making the solution
even more desirable. Today’s 10–40 Gbps optical transceivers
can draw anywhere from 1–3.5W per port depending on
technology (i.e., single- or multi-mode). Optical power splitters
are passive; a 320-port commercial optical switch draws 50W;
and optical amplifiers consume little power, on the order of
tens of Watts. Moreover, data rate transparency means future
proof. The optical devices, once deployed, do not need to be
upgraded as the transceiver technology advances.

Comparing to the come-and-go recipients in the Internet
multicast scenario, the group members in data analytics appli-
cations are fixed, i.e. all the computing nodes for a job. Obtain-
ing this information allows the distributed join/leave protocols
to be bypassed and the multicast trees to be built directly. In
case of minor membership change, e.g. VM migration or node
failure, it is inexpensive to tune the multicast tree accordingly.
Furthermore, each multicast tree over the optical network is
optimal and has homogeneous depth from the sender to each
receiver, ensuring low latency and easy tree construction.

The notorious multicast problems such as congestion con-
trol and packet loss recovery are greatly simplified. Photonic
interconnects operate at extremely low bit-error rates, i.e.
< 10−12. Data can flow through the optical channels without
experiencing any congestion. The only places of potential
congestion are the source ToR switch and the destination ToR
switch. Commodity ToR switches are already non-blocking.

Thus, to guarantee congestion-free data transmission end-to-
end, at the sender ToR switch, Blast simply needs to ensure
an optical tree is exclusively used by the assigned multicast
sender. At the receiver ToR switch, multicast traffic towards an
output port connected to a receiver should be given the highest
queueing and transmission priority. Accordingly, data analytics
applications can also be customized to pause other unicast
traffic during multicast transmission and reception. Thus, con-
gestive packet losses are eliminated, and error induced packet
losses are rare, so simple recovery mechanisms such as unicast
retransmission can suffice. This is in contrast to a regular
packet-switched multicast session where congestion may occur
anywhere along the multicast tree and even sophisticated re-
liable multicast protocols suffer from feedback (NACK/ACK)
implosion and packet retransmission congestion collapse [19].
An orthogonal issue is flow control, i.e. to choose a maximum
sending rate at which the receivers can keep up with the
incoming data. This is an application layer decision because
the rate depends on the complexity of the computation being
performed by the receivers on the data.

III. CONTROL PLANE DESIGN

A. SDN Control

The greatest challenge to the control plane design is that
optical data duplication does not fit in with the existing
network stack. Imagine the result of connecting routers to the
input and outputs of an optical power splitter. The splitter
can only send data unidirectionally, from input to output
but not vice versa. The unicast routing protocols assume
bidirectional links and thus are ignorant of these additional
optical paths. Since multicast routing protocols depend on
unicast routing protocols for topology discovery, multicast
trees will not be built over the optical power splitter. Utilizing
the optical multicast function requires multicast data delivery
to be performed over the optical power splitter while all other
traffic for maintaining the multicast tree to be transmitted
through paths elsewhere.

This asymmetric routing behavior can be achieved by a
specialized distributed multicast routing protocol. However,
the protocol needs to discover the optical paths, to learn the
multicast group members, to construct multicast trees, and to
route traffic. Considering the high capacity of optical channels,
the latency caused by these control procedures is significant
compared with the time for multicast data dissemination. High-
performance data analytics applications call for agile control
mechanisms that can quickly enable multicast transmission.

The software-defined networking (SDN) paradigm provides
a means to achieve this goal. First, the centralized control
model used in SDN allows the controller to be configured with
the topological location of the optical power splitters, and it
is possible to allocate them intelligently according to specific
application needs. Second, SDN allows arbitrarily complex
control decisions and application-network interactions to be
programmed, so that it is possible to learn the multicast groups
and configure the network to service them instantaneously.

We design an SDN control plane for Blast, which runs
on the network controller. As shown in Figure 2, if the optical
power splitters are statically placed, the control plane is simple
because multicast traffic can be directed to predefined optical

paths straightforwardly; while in case of dynamic provisioning
of optical power splitters, the control plane needs to schedule
the optical resources and configure the network at run time.
Our design focuses on the latter case.

B. Application Awareness

To service multicast traffic, the control plane first needs
to collect the traffic demands. Existing unicast-only optical
networked systems infer traffic demands from the network
without application involvement. For instance, c-Through [24]
learns the traffic volume of a unicast flow by reading the socket
buffer occupancy; Helios [14], OSA [11], and Mordia [20]
compute the bandwidth share of a unicast flow by getting the
flow counts on the traversing switches.

However, it is hard, if not impossible, to extend these
approaches to multicast communications. The source and
destination are clear for unicast transmissions, but multicast
needs to obtain the group membership before data delivery
can get started. If transparent to applications, the system
must fall back to complicated group joining protocols, whose
overheads are huge considering the fast transmission speed on
the optical channels. Also, the network-level statistics can lead
to inaccurate estimation of real traffic demands [7]. This may
be fine for the unicast-only electrical-optical hybrid networks,
because they can switch unicast traffic back and forth between
the electrical network and the optical network and adjust
the traffic demands from time to time. However, multicast
communications require very accurate traffic demands, because
once the transmission starts in other means, such as HDFS and
BitTorrent, on the electrical network, it becomes very difficult
to synchronize the receivers and migrate the transmission to
the optical network.

Fortunately, traffic demand collection can be simplified
greatly if we take advantage of the application knowledge.
The multicast group membership and traffic volume are readily
available at the application manager, or master node, of a data
analytics job [2][27]. If we let application managers inform
the traffic demands explicitly, the network controller is able
to build optimal multicast trees and allocate optical resources
instantaneously. We design an application-controller protocol,
the details of which are shown in Section IV-A.

C. Control Algorithm

1) Problem Formulation: Given the traffic demands, the
network controller runs the control algorithm to compute
the optical network topology and to allocate optical power
splitters. On a MEMS-based optical circuit switch, an input
(output) port can connect to only one output (input) port, which
forms a typical matching problem [18].

When multicast traffic comes into being, the problem is
turned into hyper-graph matching. A hyper-graph is a general-
ization of a graph in which an edge can connect any number
of vertices. Let H = (V,E) be a hyper-graph, where V is
a set of vertices and E is a set of non-empty subsets of V
called hyper-edges [18]. A hyper-graph matching is a set of
disjoint hyper-edges. Blast can be abstracted as a hyper-graph,
where V represents the racks, and E represents the multicast
groups that embody different subsets of racks. In practice, each
ToR switch may connect to the optical switch through multiple

ports, so we generalize the problem to hyper-graph b matching,
which is to seek a subset E′ of E such that each vertex v ∈ V
is met by at most b hyper-edges in the subset. In our case, b is
the number of optical ports per rack. We also associate each
hyper-edge with a weight, i.e. the multicast traffic volume.1

Our goal is to maximize the amount of multicast traffic
undertaken by the optical network, which can be formulated
as a maximum weighted hyper-graph b-matching problem. We
seek a maximum weight sub-collection of multicast groups
such that each rack is occupied by at most the number
of optical ports attached to it. In addition, Blast leverages
cascaded optical power splitters. The insertion loss of the
optical power splitters allows a limited number of splits and
the total number of optical power splitters is fixed, so we need
to consider these additional constraints:

1) Any multicast group to be serviced cannot occupy
more optical ports than the maximum allowable num-
ber of cascaded optical power splitters can provide.
Suppose N is the output port count of an optical
power splitter and k is the maximum number of
optical power splitters that can be cascaded. For a
particular multicast group i that involves ri racks,
we have ri ≤ k(N + 1)− 2(k − 1).

2) The total number of consumed optical power splitters
cannot exceed the given number. A multicast group of
ri racks consumes mi = % ri−2

N−1
& optical power split-

ters.2 Let K be the number of optical power splitters
in the system, we have

∑
i
mi =

∑
i
% ri−2

N−1
& ≤ K .

2) Greedy Heuristic: Hyper-graph matching is NP-
hard [18]. Although there is no existing model for maximum
weighted hyper-graph b-matching with additional constraints,
we envision it has similar complexity. We develop a greedy
algorithm to approximate the solution.

The multicast groups are sorted by the scoring function
s = volume/#rack, which divides the traffic volume (weight)
of a multicast group by the number of racks involved. This
scoring function gives the traffic volume per optical port. Since
optical resources are limited, it balances the traffic volume and
the group size such that the optical ports are occupied by the
most profitable multicast groups.

The multicast groups that violate Constraint 1 are rejected
immediately. Then the algorithm iteratively selects the multi-
cast groups with the highest score as long as every involved
rack has appeared in less than b previously selected multicast
groups and the cumulative number of consumed optical power
splitters does not violate Constraint 2. The algorithm continues
until no more multicast groups can be serviced with all the
constraints satisfied.

We avoid moving the multicast traffic between the electrical
network and the optical network. Once a multicast group is

1The multicast traffic volume is defined as the data volume multiplied by
the number of receivers, which is the cumulative traffic volume to transmit

2To support a multicast group from a sender rack to rmax −1 receiver racks
using optical power splitters with N output ports, a complete N -ary tree of
cascaded optical power splitters with a depth of "logN (rmax − 1)# − 1 must
be constructed. Since the number of nodes in an N -ary tree increases as a
geometric series, the total number of N -port optical power splitters needed to

support rmax is m =
⌈

rmax−2

N−1

⌉

.

TABLE I: Control algorithm computation time of various optical architectures

Architecture Problem Formulation System Configuration Traffic Pattern #Rack Time (ms)

Blast hyper-graph b-matching Intel Xeon 2.83GHz CPU, 4GB RAM real unicast and multicast traffic 1000 166
c-Through bipartite matching Intel Xeon 3.2GHz CPU, 2GB RAM random unicast traffic matrices 1000 640

Helios bipartite matching not reported synthetic unicast traffic 128 118
OSA b-matching not reported average of synthetic and real unicast traffic 80 48

selected, it is dedicated to the optical network until it finishes.
So, the control algorithm takes the multicast groups with
ongoing transmission as already selected and only allocates the
residual resources in each decision process. After a selected
multicast group is done with the transmission, the optical
power splitters and the optical switch ports occupied by the
involved racks are released.

3) Approximation Accuracy and Computation Time: We
evaluate the performance of our control algorithm in a previous
technical report. Due to space limitation, we summarize the
experimental results about the approximation accuracy and the
computation time at the high level.

We use “optimality” as the metric for measuring the
approximation accuracy. It is defined as the total traffic volume
outputted by our control algorithm divided by the optimal so-
lution. We generate unicast traffic according to real data center
traffic statistics [6]. For multicast traffic, we vary group size
from 100 to 1000 and use data size of 300MB to mimic data
analytics jobs. We feed the mixture of unicast and multicast
traffic to our control algorithm and an ILP solver respectively.
We observe that on a 200-rack setting, optimality is over 99%
for all the cases, showing the greedy approximation algorithm
is near optimal.

The computation time is measured on a processor core of
an IBM iDataPlex system, where each core runs at 2.83GHz
and has 4GB RAM. We observe that the computation time is
166ms on a 1000-rack setting. Table I compares the computa-
tion time of our control algorithm against that of the existing
MEMS-based optical network architectures. In these systems,
the optical network can only handle unicast traffic. So, they
formulate the resource scheduling as matching problems in
general graphs and use existing optimal polynomial-time al-
gorithms for solutions. Despite different system configurations
and traffic patterns, we can still perceive the general trend.
We seek to solve a more challenging problem, NP-hard in
theory, but our control algorithm outperforms that of the other
architectures, proving it is responsive enough for practical
system implementation.

IV. CONTROL PLANE IMPLEMENTATION

A. Application-Controller Protocol

Application managers talk to the network controller via
the application-controller protocol. Specific properties of Blast
pose the following fundamental requirements for the protocol.

Because responsiveness is critical, the communication
overhead should be minimal. Sending messages frequently
back and forth imposes significant challenge on the processing
power of the network controller. So, application managers
should only communicate with the network controller when

necessary, e.g. sending multicast requests. The network con-
troller should also be designed to keep states for the requests
and only respond to them when the requests are to be serviced.

Because of uncertainties in the network, applications
should be allowed to adjust the requests. Although the
multicast group membership is pre-known, there are cases in
which the members change, such as VM migration and node
failure. Also, even if the multicast traffic volume is fixed, the
duration of data transmission is unpredictable. In these cases,
application managers should update the network controller
with the latest status, though still with the minimal number
of control messages.

Because optical resources are scarce, the requests
should not be serviced on a first-come-first-serve basis.
The network may run out of optical resources, so applications
cannot expect all requests to be serviced immediately. To avoid
an unserviced request blocking all the others, the network con-
troller should communicate with applications asynchronously.
Because different requests require different set of resources,
all pending requests are considered by the controller at each
decision making point. Applications should also be allowed to
withdraw a request that has been pending for a long time.

The protocol behaves as follows to meet these require-
ments. Application managers make requests to convey the
multicast traffic volume and the group membership. The re-
quests are rejected immediately if they violate the system
constraints. Otherwise, they wait to be serviced until the
required optical resources become available. After a request is
serviced, the network controller returns the estimated service
time and the optical resources are dedicated during this period.
Application managers can extend the serviced requests with
updated requirements, such as tailoring the group membership
and extending the service time. Application managers can also
withdraw issued requests. If the withdrawn request has been
serviced already, the allocated optical resources are recycled.

Application managers may make requests in different pro-
gramming languages, and the communication latency is key
to the control plane responsiveness. The application-controller
protocol can be realized using cross-language RPC frame-
works, because they provide well-defined APIs for various
programming languages and a complete network stack with
optimized end-to-end performance. We choose the Thrift RPC
library [1], because it is widely used and supported.

The network controller runs as a Thrift server and the
application managers are Thrift clients. The server should be
non-blocking to incoming connections and be able to handle
concurrent requests, so we choose an asynchronous server
mode that uses a single thread for non-blocking network I/O
and a separate pool of worker threads to process client requests.

!"#$%&$'"(&)*+",(-./*+,"

0&("&1"+234",).%35"

6*%)&+4"3&7%+&--*+"

898:"&(;32-"3.+3<.%",).%35" !",*+=*+,>"*235").%5"!"
#?@A(,"6BC"(&+%,"

Fig. 3: Blast testbed setup

B. Controller-Network Protocol

The network controller uses the controller-network protocol
to reconfigure the network. First, the internal connections on
the optical switch need to be created to build multicast trees on
the optical network. Second, new OpenFlow rules need to be
set on the SDN-capable ToR switches to forward the multicast
traffic to the constructed multicast trees.

The network controller can instruct the reconfiguration of
physical connections on the optical switch through a soft-
ware interface, called TL1. To set OpenFlow rules easily,
we implement the network controller as a module on the
Floodlight SDN controller [4]. The Floodlight default routing
behaviors are disabled. Our network controller inserts and
deletes OpenFlow rules through the Floodlight REST API.
It can set OpenFlow rules and configure the optical switch
simultaneously to reduce the overall reconfiguration delay.

V. TESTBED

A. System Setting

We implement Blast on a small-scale hardware testbed to
evaluate the efficacy and performance of its control plane. The
testbed is shown in Figure 3.

Our end-nodes consist of two servers running Ubuntu
Linux, each with an Intel Core(TM)2 Quad Q9300 CPU @
2.50GHz and 4GB RAM @ 800MHz, and two 10Gbps NIC
ports. They are connected to a 10Gbps Quanta SDN-capable
ToR switch by all the NIC ports (black cables in figure)
to emulate four individual end servers each connected to a
separate ToR switch. Each logical ToR switch has an optical
uplink, consisting of an input fiber and an output fiber (yellow
fibers in figure), connected to a Glimmerglass MEMS optical
circuit switch. A subset of the optical switch ports are also
attached to two 1-to-4 optical power splitters. The network
controller runs on a machine with an AMD Athlon(tm) 64 X2
6000+ dual-core CPU @ 3GHz and 4GB RAM @ 667MHz.
It is connected to the ToR switch (black cable in figure) and

TABLE II: Break down of the control plane latency

Thrift communication 1.747 ms
Control algorithm computation 8.553 ms

OpenFlow rules insertion 8.711 ms
Optical switch configuration 14.172 ms

Total 33.183 ms

the optical switch (purple cable in figure) each through a
management port.

We deploy the control plane on the network controller. The
control algorithm is triggered if there are pending requests, and
it handles them all at once. We develop a simple multicast
application, which complies with the application-controller
protocol and runs iperf UDP to generate multicast traffic.

B. Experimental Results

We test the functionality of the system by sending requests,
extending requests, withdrawing requests, and sending concur-
rent requests with and without resource conflicts. The system
behaves correctly. The sender can send at line rate (∼10Gbps),
and the receiver is able to receive at the same rate without any
packet loss over the network.

We measure the processing latency of a single request, i.e.
the time from sending the multicast request to starting the
multicast transmission. Table II shows the break down of the
latency. The total latency is 33.183ms, a small overhead to the
subsequent data transmission. For instance, sending 1GB data
over a 10Gbps link takes 800ms. It should be clarified that a
multicast request is issued per iteration, not per job, so that
when a job is in its shuffle or aggregation phases, the optical
multicast resources can be released and be used by other jobs.
The control plane can be optimized to set OpenFlow rules
and configure the optical switch in parallel. By doing so, we
can reduce the control plane latency to less than 25ms. This
means Blast can handle 40 requests per second in the worst
case where requests are simply handled one at a time. Because
a job sends a single request every iteration, an iteration lasting
tens to hundreds of seconds [12], at 40 requests per second,
Blast can easily handle hundreds of concurrent jobs running
on thousands of servers. To give a concrete example, suppose
50 optical splitters are available, each has sufficient fan-out to
handle a multicast iteration. At 40 requests per second, each
sender can transmit for 1.25s per iteration or 1.56GB of data
at 10Gbps, enough to meet the needs of the data analytics
applications that motivated Blast.

VI. SIMULATION

This section evaluates the performance of Blast in a big
cluster setting using flow-level simulations. We demonstrate
its performance benefits by comparing to the state-of-the-art
multicast approaches for data analytics applications.

A. Simulation Setting

1) Simulation Methodology: There are 120 racks in the
simulated network, each with 40 servers. We use the multicast
completion time as our performance metric, computed based
on the flows’ max-min fair share bandwidth. Multicast trans-
mission is completed when the data reach all the receivers.

Detailed transport layer protocol behaviors are not considered
in this flow-level simulation, so our simulation results provide
an ideal-case lower-bound on completion time for each of
the approaches compared. We believe this bound is relatively
tight for Blast, because packet loss is expected to be rare in
optical channels. In contrast, the bound is fairly loose for
the other approaches, because packet loss is more common
in a congested network environment. We consider the control
plane overhead for Blast as well, which makes the bound even
tighter. Specifically, we implement the control algorithm, as
shown in Section III-C, and add the request processing delay,
as measured in Section V-B, to the multicast completion time.

2) Communication Patterns: We use the multicast phase of
one data analytics job iteration as the multicast traffic pattern
for our simulation. We also add synthetic unicast traffic of
different intensity as background traffic to stress the network
to different degrees.

Multicast traffic: In accordance with the group size and
the data size of the example data analytics job shown in
the introduction, we let 120 servers form a multicast group
and 300MB data to be sent. Assuming contiguous server
placement, a multicast group spans 3 racks. We randomly
choose 3 racks and let the first server in one rack send to
all the other servers in the same group. We suppose 90% of
the servers are involved in data analytics jobs, so there are 36
simultaneous multicast groups in total and different multicast
groups do not share common group members.

Unicast traffic: We create no, light, and heavy rack-level
traffic patterns to stress the network core with increasing load.
The racks are indexed from 0 to 119 and the servers in each
rack are indexed from 0 to 39. The traffic shifts round by
round, with old flows removed and new flows created at the
beginning of each round. Each round lasts for 1 second.

1) No unicast traffic: There is no unicast background
traffic at any time.

2) Light unicast traffic: In round t, any server j in
rack i talks to server j in racks (i+ t± 1) mod 120,
(i+ t± 2) mod 120, and (i+ t± 3) mod 120.

3) Heavy unicast traffic: In round t, any server j in
rack i talks to server j in racks (i+ t± 1) mod 120,
(i+t±2) mod 120, (i+t±3) mod 120, ..., (i+t±40)
mod 120.

3) Networks Compared: We simulate a 10:1 oversub-
scribed network and a non-blocking network respectively to
show the performance variance under different oversubscrip-
tion ratios. We assume a single core switch connecting up all
the ToR switches. The links between servers and ToR switches
are 10Gbps. The links between ToR switches and the core
switch are 40Gbps for the 10:1 oversubscribed network and
400Gbps for the non-blocking network. The state-of-the-art
approaches for multicast data delivery in data analytics appli-
cations are HDFS and P2P overlay. We add naive unicast as the
baseline for comparison. We simulate these three approaches
on top of the oversubscribed and the non-blocking network.
Detailed descriptions of the systems are as follows.

1) Naive unicast 10:1 oversubscribe/non-blocking:
The data source distributes the data to the destinations
by individual flows all at the same time.

2) HDFS 10:1 oversubscribe/non-blocking: Hadoop
uses HDFS as a medium for multicast. The multicast
sender writes the data to HDFS and the receivers read
from it. HDFS chunks up the data into blocks and
creates replicas for each block. We use the default
block size of 64MB and replication factor of 3. That
is, each data block is replicated at 3 places, one
at the data source, one on a different server in the
same rack, and one in a different rack. When the
multicast receivers read from HDFS, the data blocks
are retrieved from the closest replica.

3) Overlay 10:1 oversubscribe/non-blocking: Spark
uses BitTorrent to multicast data [27]. BitTorrent
suffers from suboptimal multicast trees, and its per-
formance is very poor in practice [5]. The Spark
developers propose to use the SplitStream [10] over-
lay system for performance improvement [5]. We
simulate SplitStream as an upper bound for BitTor-
rent. SplitStream builds optimal interior-node-disjoint
multicast trees and thus distributes the forwarding
load among all participating peers. We simulate the
principle of topology-awareness in the Spark BitTor-
rent implementation as well [12]. To minimize cross-
rack communications, we choose a leading server
for the receivers within the same rack. We form a
swarm among the leading servers across racks, and
they subsequently distribute the content to servers in
the same rack as another swarm.

4) Blast: We simulate Blast on the 10:1 oversubscribed
network. The optical network has a 320-port optical
switch, which connects to 40 1-to-4 optical power
splitters and to each ToR switch by 1 port. All optical
links are 10Gbps. Although the electrical network
(40Gbps) and the optical network (10Gbps) are sep-
arate, the network core has 50Gbps total bandwidth,
making the cumulative oversubscription ratio 8:1. We
set the reconfiguration delay as 25ms according to
the discussions in Section V-B. The control algorithm
computation delay is measured at run time.

B. Simulation Results

Figure 4 plots the simulation results in log scale. We have
the following observations:

Using only a 10Gbps optical uplink per rack, Blast
achieves upto 102× better performance than HDFS and
upto 37× better performance than overlay, even when
they are used over a non-blocking core network with a
400Gbps uplink per rack. Blast is significantly better than the
other approaches because of two essential reasons. First, it has
optimal link stress, so no data get transmitted unnecessarily.
Alternative systems, however, even if given tremendous core
bandwidth, have a large number of duplicated flows that
reduce the transmission speed. Second, it has a separate optical
network dedicated to the multicast communications. So, the
multicast traffic can transmit on a “clean” network core,
without sharing bandwidth with the background flows.

The benefit of Blast becomes more notable when the
network is heavily stressed. As the unicast background traffic
increases, the multicast completion time of the Blast only

No background traffic Light background traffic Heavy background traffic
102

103

104

105

106
M

ul
tic

as
t c

om
pl

et
io

n
tim

e
(m

s)

2.8
6e

+0
4

3.0
0e

+0
4

1.9
7e

+0
5

2.8
6e

+0
4

3.0
0e

+0
4

4.7
8e

+0
4

8.2
6e

+0
3

1.8
4e

+0
4

2.2
2e

+0
5

8.2
6e

+0
3

1.0
0e

+0
4 3.0

1e
+0

4

4.8
0e

+0
2

7.2
6e

+0
3

9.6
1e

+0
4

4.8
0e

+0
2 1.6

2e
+0

3
1.0

8e
+0

4

2.6
5e

+0
2

2.9
5e

+0
2

2.9
5e

+0
2

Naive unicast oversubscribe
Naive unicast non−blocking
HDFS oversubscribe
HDFS non−blocking
Overlay oversubscribe
Overlay non−blocking
Blast

Fig. 4: Average multicast completion time (ms) of different approaches under various background traffic

grows from 0.265s to 0.295s, in contrast to dramatic degra-
dations of the other approaches. With no background traffic,
the servers get the full link capacity and thus the transmission
time is optimal. In case of background traffic, whether light
or heavy, the multicast transmission remains at a constantly
fast speed. This is because the cross-rack background flows
get rate-limited by the congested core of the oversubscribed
electrical network, thus the fixed amount of residual bandwidth
at the edge can be utilized by the multicast transmission.

Blast is expected to get better performance even com-
pared with IP multicast on a separate 10Gbps network,
because it does not require complex multicast routing pro-
tocols. IP multicast involves complex protocols for maintaining
the group membership, building the multicast tree, achieving
congestion control and flow control, etc, which are very heavy
overheads for the data transmission. Yet the Blast control plane
design simplifies these functions greatly. Even with the same
link stress and on networks of the same capacity, Blast will
outperform IP multicast.

We also analyze the weaknesses of the other approaches
as follows:

Naive unicast has a link stress as high as the number of
receivers. On the oversubscribed network, due to the sender’s
high fan-out, the network edge is more congested than the
network core given light unicast background traffic. Adding
bandwidth to the network core brings no improvement in this
case. So, the non-blocking network is only helpful when the
background traffic is heavy enough to stress the network core.

HDFS is more efficient than naive unicast, but its benefit
diminishes as the background traffic increases. In HDFS,
receivers read from data replicas in different places, so the
load for data distribution gets balanced. Since large data are
chunked up into blocks that can be retrieved simultaneously,
the sending capacity is multiplied as well. However, since
data blocks are always replicated across racks, the replication
process slows down when a large number of background flows
share the core bandwidth. This also explains why the non-
blocking network helps for HDFS. On the oversubscribed
network with heavy background traffic. The data replication

is so slow that the overall multicast completion time is even
worse than that of the naive unicast.

Overlay leads to faster transmission because the sender
creates many unicast sessions to send a piece of data to each
of the receivers, thus taking a greater cumulative fair share
bandwidth from the competing flows. Interestingly, the Spark
principle of minimizing cross-rack communications is not as
effective as expected. Although the peers can avoid seeking
data from other racks at reduced speed, having the minimal
number of cross-rack flows loses the power of grabbing
bandwidth as a swarm and the downstream flows are thus
bottlenecked. This effect is observed as the background traffic
increases, and the non-blocking network helps mitigate the
effect by accelerating the cross-rack overlay flows.

VII. RELATED WORK

We have discussed the state-of-the-art approaches for
multicast data dissemination in computer clusters. Hadoop
builds an overlay over HDFS to spread data via multiple
data replicas [2]. Cornet develops a BitTorrent-like protocol
optimized for the cluster computing applications [12], and the
method is adopted by Spark [27]. Twitter uses BitTorrent to
distribute software updates to its servers [3]. We have shown
in Section VI that Blast can outperform these solutions by a
large factor. Using only a 10Gbps optical uplink per rack, Blast
achieves upto 102× better performance than these solutions
even when they are used over a non-blocking core network
with a 400Gbps uplink per rack.

Datacast presents another overlay approach based on in-
switch packet caching and edge-disjoint Steiner trees [9],
which is more efficient than end-host overlays. Blast has higher
transmission speed than Datacast, because it uses high-rate
optical channels dedicated for multicast traffic. Multicast traffic
can be sent at line rate as it no longer competes with unicast
traffic in the packet-switched network. Datacast is not readily
implementable because packet caching adds significant com-
plexity to switches, and only specialized network structures
such as BCube and CamCube can benefit from multiple Steiner
tree forwarding. In contrast, Blast is practical because it uses
off-the-shelf SDN switches and optical power splitters.

A number of studies aim to reduce the switch states
required for implementing IP multicast trees in the data
center environment. Dr. Multicast selectively maps multicast
to unicast transmissions to reduce the number of multicast
trees required [23]. Li et al. design a novel multi-class
Bloom Filter to efficiently compress the multicast forwarding
table [15]. ESM reduces the switch states required by multicast
by combining in-packet Bloom Filter and in-switch routing
entries [16]. Blast makes these solutions unnecessary, because
it eliminates the need to build multicast trees in the packet-
switched network. RDCM assists reliable group data delivery
by repairing lost packets in a peer-to-peer way [17]. Blast can
eliminate congestive packet losses, but may leverage RDCM
to help repair occasional error-induced packet losses.

VIII. CONCLUSION

This paper describes the design and implementation of
Blast, a system for accelerating data analytics applications
by physical-layer multicast using the optical power splitting
technology. Blast uses an SDN control plane to incorporate
optical data duplication into the existing network stack. By
getting multicast requests directly from applications, the con-
trol plane can allocate optical resources intelligently based
on the applications’ traffic demands and group memberships.
A greedy-based control algorithm can achieve near-optimal
optical resource allocation with relatively low time cost. The
reconfiguration mechanisms can setup optical paths and change
the network routing behaviors at run time to realize multicast
routing accordingly.

We implement Blast on a small-scale hardware testbed.
Multicast transmission can start 33ms after an application
issues a request, resulting in a very small control overhead.
The control plane can easily handle hundreds of concurrent
data analytics jobs running over thousands of servers. With
a few tens of optical splitters, a sender can transmit on the
order of a gigabyte of data per iteration, meeting the needs
of data analytics applications that motivated this research.
We evaluate Blast’s performance at the scale of thousands of
servers through simulation. Using only a 10Gbps optical uplink
per rack, Blast achieves upto 102× better performance than
the state-of-the-art solutions even when they are used over a
non-blocking core network with a 400Gbps uplink per rack.

ACKNOWLEDGMENT

This research was sponsored by the NSF under CNS-
1422925, CNS-1305379 and CNS-1162270, by an Alfred P.
Sloan Research Fellowship, an IBM Faculty Award, and by
Microsoft Corp.

REFERENCES

[1] Apache Thrift, http://thrift.apache.org.

[2] Hadoop, https://hadoop.apache.org.

[3] Murder, http://engineering.twitter.com/2010/07/murder-fast-datacenter-
code-deploys.html.

[4] Project Floodlight, http://www.projectfloodlight.org/floodlight/.

[5] Spark Technical Report, http://www.cs.berkeley.edu/ agearh/cs267.sp10/
files/mosharaf-spark-bc-report-spring10.pdf.

[6] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prab-
hakar, S. Sengupta, and M. Sridharan. DCTCP: Efficient Packet
Transport for the Commoditized Data Center. In ACM SIGCOMM’10,
New Delhi, India, Aug. 2010.

[7] H. H. Bazzaz, M. Tewari, G. Wang, G. Porter, T. S. E. Ng, D. G.
Andersen, M. Kaminsky, M. A. Kozuch, and A. Vahdat. Switching the
Optical Divide: Fundamental Challenges for Hybrid Electrical Optical
Datacenter Networks. In SOCC ’11, pages 1–8, Cascais, Portugal, Oct.
2011.

[8] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent Dirichlet Allocation. J.
Mach. Learn. Res., 3:993–1022, Mar. 2003.

[9] J. Cao, C. Guo, G. Lu, Y. Xiong, Y. Zheng, Y. Zhang, Y. Zhu, and
C. Chen. Datacast: a Scalable and Efficient Reliable Group Data
Delivery Service for Data Centers. In CoNEXT ’12, pages 37–48, Nice,
France, Dec. 2012.

[10] M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi, A. Rowstron,
and A. Singh. SplitStream: High-bandwidth Multicast in Cooperative
Environments. In SOSP ’03, pages 298–313, Bolton Landing, NY, USA,
Oct. 2003.

[11] K. Chen, A. Singla, A. Singh, K. Ramachandran, L. Xu, Y. Zhang,
X. Wen, and Y. Chen. OSA: An Optical Switching Architecture for
Data Center Networks with Unprecedented Flexibility. In NSDI ’12,
San Joes, CA, USA, April 2012.

[12] M. Chowdhury, M. Zaharia, J. Ma, M. I. Jordan, and I. Stoica. Managing
Data Transfers in Computer Clusters with Orchestra. In SIGCOMM ’11,
pages 98–109, Toronto, Canada, Aug. 2011.

[13] J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing on
Large Clusters. Commun. ACM, 51(1):107–113, Jan. 2008.

[14] N. Farrington, G. Porter, S. Radhakrishnan, H. H. Bazzaz, V. Sub-
ramanya, Y. Fainman, G. Papen, and A. Vahdat. Helios: A Hybrid
Electrical/Optical Switch Architecture for Modular Data Centers. In
SIGCOMM ’10, page 339, New Delhi, India, Aug. 2010.

[15] D. Li, H. Cui, Y. Hu, Y. Xia, and X. Wang. Scalable Data Center
Multicast Using Multi-class Bloom Filter. In ICNP ’11, pages 266–
275, Vancouver, Canada, Oct. 2011.

[16] D. Li, Y. Li, J. Wu, S. Su, and J. Yu. ESM: Efficient and Scalable Data
Center Multicast Routing. IEEE/ACM Transactions on Networking,
20(3):944–955, June 2012.

[17] D. Li, M. Xu, M.-C. Zhao, C. Guo, Y. Zhang, and M.-Y. Wu. RDCM:
Reliable Data Center Multicast. In INFOCOM ’11, pages 56–60,
Shanghai, China, Apr. 2011.

[18] L. Lovasz and M. D. Plummer. Matching Theory. AMS Chelsea
Publishing. American Mathematical Society, 2009.

[19] K. Obraczka. Multicast Transport Protocols: a Survey and Taxonomy.
Communications Magazine, IEEE, 36(1):94–102, 1998.

[20] G. Porter, R. Strong, N. Farrington, A. Forencich, P. Chen-Sun, T. Ros-
ing, Y. Fainman, G. Papen, and A. Vahdat. Integrating microsecond
circuit switching into the data center. In Proceedings of the ACM
SIGCOMM 2013 Conference on SIGCOMM, SIGCOMM ’13, pages
447–458, New York, NY, USA, 2013. ACM.

[21] R. Ramaswami, K. Sivarajan, and G. H. Sasaki. Optical Networks: A
Practical Perspective. Morgan Kaufmann, 3rd edition, 2009.

[22] P. Samadi, D. Calhoun, H. Wang, and K. Bergman. Accelerating Cast
Traffic Delivery in Data Centers Leveraging Physical Layer Optics and
SDN. In Optical Network Design and Modeling, 2014 International
Conference on, pages 73–77. IEEE, 2014.

[23] Y. Vigfusson, H. Abu-Libdeh, M. Balakrishnan, K. Birman, R. Burgess,
G. Chockler, H. Li, and Y. Tock. Dr. multicast: Rx for Data Center
Communication Scalability. In EuroSys ’10, pages 349–362, Paris,
France, Apr. 2010.

[24] G. Wang, D. G. Andersen, M. Kaminsky, K. Papagiannaki, T. S. E. Ng,
M. Kozuch, and M. Ryan. c-Through: Part-time Optics in Data Centers.
In SIGCOMM ’10, page 327, New Delhi, India, Aug. 2010.

[25] H. Wang, C. Chen, K. Sripanidkulchai, S. Sahu, and K. Bergman. Dy-
namically Reconfigurable Photonic Resources for Optically Connected
Data Center Networks. In OFC/NFOEC ’12, 2012.

[26] H. Wang, Y. Xia, K. Bergman, T. S. E. Ng, S. Sahu, and K. Sripanid-
kulchai. Rethinking the Physical Layer of Data Center Networks of
the Next Decade: Using Optics to Enable Efficient *-Cast Connectivity.
SIGCOMM Computer Communication Review, 43(3):52–58, July 2013.

[27] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica.
Spark: Cluster computing with working sets. In Proceedings of the 2Nd
USENIX Conference on Hot Topics in Cloud Computing, HotCloud’10,
pages 10–10, Berkeley, CA, USA, 2010. USENIX Association.

